Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496501

RESUMO

Purpose: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the calibrated PP3/BP4 computational recommendations. Methods: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. Results: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of PP3_Strong variants increased approximately 2.6-fold compared to disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. Conclusion: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3,424 disease-associated genes, and though not the intended use of the recommendations, also genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as Pathogenic or Likely Pathogenic by ACMG/AMP rules.

2.
Genet Med ; 26(2): 100992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800450

RESUMO

PURPOSE: The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS: Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS: The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION: The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.


Assuntos
Polipose Adenomatosa do Colo , Testes Genéticos , Humanos , Testes Genéticos/métodos , Variação Genética , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Mutação em Linhagem Germinativa/genética , Células Germinativas
3.
EClinicalMedicine ; 58: 101909, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37181409

RESUMO

Background: The Prospective Lynch Syndrome Database (PLSD) collates information on carriers of pathogenic or likely pathogenic MMR variants (path_MMR) who are receiving medical follow-up, including colonoscopy surveillance, which aims to the achieve early diagnosis and treatment of cancers. Here we use the most recent PLSD cohort that is larger and has wider geographical representation than previous versions, allowing us to present mortality as an outcome, and median ages at cancer diagnoses for the first time. Methods: The PLSD is a prospective observational study without a control group that was designed in 2012 and updated up to October 2022. Data for 8500 carriers of path_MMR variants from 25 countries were included, providing 71,713 years of follow up. Cumulative cancer incidences at 65 years of age were combined with 10-year crude survival following cancer, to derive estimates of mortality up to 75 years of age by organ, gene, and gender. Findings: Gynaecological cancers were more frequent than colorectal cancers in path_MSH2, path_MSH6 and path_PMS2 carriers [cumulative incidence: 53.3%, 49.6% and 23.3% at 75 years, respectively]. Endometrial, colon and ovarian cancer had low mortality [8%, 13% and 15%, respectively] and prostate cancers were frequent in male path_MSH2 carriers [cumulative incidence: 39.7% at 75 years]. Pancreatic, brain, biliary tract and ureter and kidney and urinary bladder cancers were associated with high mortality [83%, 66%, 58%, 27%, and 29%, respectively]. Among path_MMR carriers undergoing colonoscopy surveillance, particularly path_MSH2 carriers, more deaths followed non-colorectal Lynch syndrome cancers than colorectal cancers. Interpretation: In path_MMR carriers undergoing colonoscopy surveillance, non-colorectal Lynch syndrome cancers were associated with more deaths than were colorectal cancers. Reducing deaths from non-colorectal cancers presents a key challenge in contemporary medical care in Lynch syndrome. Funding: We acknowledge funding from the Norwegian Cancer Society, contract 194751-2017.

4.
Am J Hum Genet ; 109(12): 2163-2177, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413997

RESUMO

Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the use of computational predictors as "supporting" level of evidence for pathogenicity or benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommendations that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have extended this framework to computational predictors and introduce a new standard that converts a tool's scores to PP3 and BP4 evidence strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets. Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multiple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.


Assuntos
Calibragem , Humanos , Consenso , Escolaridade , Virulência
5.
Hered Cancer Clin Pract ; 20(1): 36, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182917

RESUMO

OBJECTIVE: To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. METHODS: CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. RESULTS: In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. CONCLUSIONS: Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so.

6.
Res Sq ; 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35441168

RESUMO

The repertoire of coronavirus disease 2019 (COVID-19)-mediated adverse health outcomes has continued to expand in infected patients, including the susceptibility to developing long-COVID; however, the molecular underpinnings at the cellular level are poorly defined. In this study, we report that SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection triggers host cell genome instability by modulating the expression of molecules of DNA repair and mutagenic translesion synthesis. Further, SARS-CoV-2 infection causes genetic alterations, such as increased mutagenesis, telomere dysregulation, and elevated microsatellite instability (MSI). The MSI phenotype was coupled to reduced MLH1, MSH6, and MSH2 in infected cells. Strikingly, pre-treatment of cells with the REV1-targeting translesion DNA synthesis inhibitor, JH-RE-06, suppresses SARS-CoV-2 proliferation and dramatically represses the SARS-CoV-2-dependent genome instability. Mechanistically, JH-RE-06 treatment induces autophagy, which we hypothesize limits SARS-CoV-2 proliferation and, therefore, the hijacking of host-cell genome instability pathways. These results have implications for understanding the pathobiological consequences of COVID-19.

7.
J Clin Med ; 10(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203177

RESUMO

BACKGROUND: Lynch syndrome is the most common genetic predisposition for hereditary cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers, depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence (penetrance) according to the gene involved have led to the stratification of cancer surveillance. By contrast, any differences in penetrance determined by the type of pathogenic variant remain unknown. OBJECTIVE: To determine cumulative incidences of cancer in carriers of truncating and missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. METHODS: Carriers of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing according to the InSiGHT criteria for pathogenicity. RESULTS: Among 5199 carriers, 1045 had missense or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for the two groups were 8205 and 34,141 years, respectively, after which there were no significant differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately. CONCLUSION: Truncating and missense or aberrant splicing pathogenic variants were associated with similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.

8.
Eur J Cancer ; 148: 124-133, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743481

RESUMO

PURPOSE: This study aimed to report the uptake of hysterectomy and/or bilateral salpingo-oophorectomy (BSO) to prevent gynaecological cancers (risk-reducing surgery [RRS]) in carriers of pathogenic MMR (path_MMR) variants. METHODS: The Prospective Lynch Syndrome Database (PLSD) was used to investigate RRS by a cross-sectional study in 2292 female path_MMR carriers aged 30-69 years. RESULTS: Overall, 144, 79, and 517 carriers underwent risk-reducing hysterectomy, BSO, or both combined, respectively. Two-thirds of procedures before 50 years of age were combined hysterectomy and BSO, and 81% of all procedures included BSO. Risk-reducing hysterectomy was performed before age 50 years in 28%, 25%, 15%, and 9%, and BSO in 26%, 25%, 14% and 13% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 carriers, respectively. Before 50 years of age, 107 of 188 (57%) BSO and 126 of 204 (62%) hysterectomies were performed in women without any prior cancer, and only 5% (20/392) were performed simultaneously with colorectal cancer (CRC) surgery. CONCLUSION: Uptake of RRS before 50 years of age was low, and RRS was rarely undertaken in association with surgical treatment of CRC. Uptake of RRS aligned poorly with gene- and age-associated risk estimates for endometrial or ovarian cancer that were published recently from PLSD and did not correspond well with current clinical guidelines. The reasons should be clarified. Decision-making on opting for or against RRS and its timing should be better aligned with predicted risk and mortality for endometrial and ovarian cancer in Lynch syndrome to improve outcomes.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Heterozigoto , Histerectomia/métodos , Mutação , Salpingo-Ooforectomia/métodos , Adulto , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/cirurgia , Estudos Transversais , Bases de Dados Factuais , Feminino , Seguimentos , Neoplasias dos Genitais Femininos/prevenção & controle , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
9.
Genet Med ; 23(4): 705-712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257847

RESUMO

PURPOSE: To determine impact of risk-reducing hysterectomy and bilateral salpingo-oophorectomy (BSO) on gynecological cancer incidence and death in heterozygotes of pathogenic MMR (path_MMR) variants. METHODS: The Prospective Lynch Syndrome Database was used to investigate the effects of gynecological risk-reducing surgery (RRS) at different ages. RESULTS: Risk-reducing hysterectomy at 25 years of age prevents endometrial cancer before 50 years in 15%, 18%, 13%, and 0% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 heterozygotes and death in 2%, 2%, 1%, and 0%, respectively. Risk-reducing BSO at 25 years of age prevents ovarian cancer before 50 years in 6%, 11%, 2%, and 0% and death in 1%, 2%, 0%, and 0%, respectively. Risk-reducing hysterectomy at 40 years prevents endometrial cancer by 50 years in 13%, 16%, 11%, and 0% and death in 1%, 2%, 1%, and 0%, respectively. BSO at 40 years prevents ovarian cancer before 50 years in 4%, 8%, 0%, and 0%, and death in 1%, 1%, 0%, and 0%, respectively. CONCLUSION: Little benefit is gained by performing RRS before 40 years of age and premenopausal BSO in path_MSH6 and path_PMS2 heterozygotes has no measurable benefit for mortality. These findings may aid decision making for women with LS who are considering RRS.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/prevenção & controle , Reparo de Erro de Pareamento de DNA/genética , Feminino , Heterozigoto , Humanos , Histerectomia , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Estudos Prospectivos , Salpingo-Ooforectomia
10.
PLoS One ; 15(8): e0233673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750050

RESUMO

Computational algorithms are often used to assess pathogenicity of Variants of Uncertain Significance (VUS) that are found in disease-associated genes. Most computational methods include analysis of protein multiple sequence alignments (PMSA), assessing interspecies variation. Careful validation of PMSA-based methods has been done for relatively few genes, partially because creation of curated PMSAs is labor-intensive. We assessed how PMSA-based computational tools predict the effects of the missense changes in the APC gene, in which pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic or Likely Pathogenic APC variants are protein-truncating changes. However, public databases now contain thousands of variants reported as missense. We created a curated APC PMSA that contained >3 substitutions/site, which is large enough for statistically robust in silico analysis. The creation of the PMSA was not easily automated, requiring significant querying and computational analysis of protein and genome sequences. Of 1924 missense APC variants in the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two missense variants listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Pathogenicity predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP, REVEL) differed widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5-75.0%) and Benign/Likely Benign (range 25.0-82.5%) for APC missense variants in ClinVar. When applied to 21 missense variants reported in ClinVar and securely classified as Benign, the five methods ranged in accuracy from 76.2-100%. Computational PMSA-based methods can be an excellent classifier for variants of some hereditary cancer genes. However, there may be characteristics of the APC gene and protein that confound the results of in silico algorithms. A systematic study of these features could greatly improve the automation of alignment-based techniques and the use of predictive algorithms in hereditary cancer genes.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Genes APC , Mutação de Sentido Incorreto , Algoritmos , Sequência de Aminoácidos , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Elementos Facilitadores Genéticos , Evolução Molecular , Éxons , Variação Genética , Humanos , Filogenia , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Alinhamento de Sequência/estatística & dados numéricos
12.
Genet Med ; 22(5): 847-856, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31965077

RESUMO

PURPOSE: Variants in the DNA mismatch repair (MMR) gene MSH6, identified in individuals suspected of Lynch syndrome, are difficult to classify owing to the low cancer penetrance of defects in that gene. This not only obfuscates personalized health care but also the development of a rapid and reliable classification procedure that does not require clinical data. METHODS: The complete in vitro MMR activity (CIMRA) assay was calibrated against clinically classified MSH6 variants and, employing Bayes' rule, integrated with computational predictions of pathogenicity. To enable the validation of this two-component classification procedure we have employed a genetic screen to generate a large set of inactivating Msh6 variants, as proxies for pathogenic variants. RESULTS: The genetic screen-derived variants established that the two-component classification procedure displays high sensitivities and specificities. Moreover, these inactivating variants enabled the direct reclassification of human variants of uncertain significance (VUS) as (likely) pathogenic. CONCLUSION: The two-component classification procedure and the genetic screens provide complementary approaches to rapidly and cost-effectively classify the large majority of human MSH6 variants. The approach followed here provides a template for the classification of variants in other disease-predisposing genes, facilitating the translation of personalized genomics into personalized health care.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Proteínas de Ligação a DNA/genética , Teorema de Bayes , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Proteína 2 Homóloga a MutS/genética
13.
Genet Med ; 22(1): 15-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31337882

RESUMO

PURPOSE: Pathogenic variants affecting MLH1, MSH2, MSH6, and PMS2 cause Lynch syndrome and result in different but imprecisely known cancer risks. This study aimed to provide age and organ-specific cancer risks according to gene and gender and to determine survival after cancer. METHODS: We conducted an international, multicenter prospective observational study using independent test and validation cohorts of carriers of class 4 or class 5 variants. After validation the cohorts were merged providing 6350 participants and 51,646 follow-up years. RESULTS: There were 1808 prospectively observed cancers. Pathogenic MLH1 and MSH2 variants caused high penetrance dominant cancer syndromes sharing similar colorectal, endometrial, and ovarian cancer risks, but older MSH2 carriers had higher risk of cancers of the upper urinary tract, upper gastrointestinal tract, brain, and particularly prostate. Pathogenic MSH6 variants caused a sex-limited trait with high endometrial cancer risk but only modestly increased colorectal cancer risk in both genders. We did not demonstrate a significantly increased cancer risk in carriers of pathogenic PMS2 variants. Ten-year crude survival was over 80% following colon, endometrial, or ovarian cancer. CONCLUSION: Management guidelines for Lynch syndrome may require revision in light of these different gene and gender-specific risks and the good prognosis for the most commonly associated cancers.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA/economia , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Adulto , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/mortalidade , Reparo de Erro de Pareamento de DNA , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Penetrância , Estudos Prospectivos , Medição de Risco , Caracteres Sexuais , Análise de Sobrevida
14.
Genome Med ; 12(1): 3, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892348

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) clinical variant interpretation guidelines established criteria for different types of evidence. This includes the strong evidence codes PS3 and BS3 for "well-established" functional assays demonstrating a variant has abnormal or normal gene/protein function, respectively. However, they did not provide detailed guidance on how functional evidence should be evaluated, and differences in the application of the PS3/BS3 codes are a contributor to variant interpretation discordance between laboratories. This recommendation seeks to provide a more structured approach to the assessment of functional assays for variant interpretation and guidance on the use of various levels of strength based on assay validation. METHODS: The Clinical Genome Resource (ClinGen) Sequence Variant Interpretation (SVI) Working Group used curated functional evidence from ClinGen Variant Curation Expert Panel-developed rule specifications and expert opinions to refine the PS3/BS3 criteria over multiple in-person and virtual meetings. We estimated the odds of pathogenicity for assays using various numbers of variant controls to determine the minimum controls required to reach moderate level evidence. Feedback from the ClinGen Steering Committee and outside experts were incorporated into the recommendations at multiple stages of development. RESULTS: The SVI Working Group developed recommendations for evaluators regarding the assessment of the clinical validity of functional data and a four-step provisional framework to determine the appropriate strength of evidence that can be applied in clinical variant interpretation. These steps are as follows: (1) define the disease mechanism, (2) evaluate the applicability of general classes of assays used in the field, (3) evaluate the validity of specific instances of assays, and (4) apply evidence to individual variant interpretation. We found that a minimum of 11 total pathogenic and benign variant controls are required to reach moderate-level evidence in the absence of rigorous statistical analysis. CONCLUSIONS: The recommendations and approach to functional evidence evaluation described here should help clarify the clinical variant interpretation process for functional assays. Further, we hope that these recommendations will help develop productive partnerships with basic scientists who have developed functional assays that are useful for interrogating the function of a variety of genes.


Assuntos
Variação Genética , Teorema de Bayes , Genoma Humano , Guias como Assunto , Humanos , Mutação com Perda de Função , Sociedades Médicas
15.
Genet Med ; 21(7): 1507-1516, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523343

RESUMO

PURPOSE: Gene-disease associations implicated in hereditary colorectal cancer and polyposis susceptibility were evaluated using the ClinGen Clinical Validity framework. METHODS: Forty-two gene-disease pairs were assessed for strength of evidence supporting an association with hereditary colorectal cancer and/or polyposis. Genetic and experimental evidence supporting each gene-disease relationship was curated independently by two trained biocurators. Evidence was reviewed with experts and assigned a final clinical validity classification. RESULTS: Of all gene-disease pairs evaluated, 14/42 (33.3%) were Definitive, 1/42 (2.4%) were Strong, 6/42 (14.3%) were Moderate, 18/42 (42.9%) were Limited, and 3/42 (7.1%) were either No Reported Evidence, Disputed, or Refuted. Of panels in the National Institutes of Health Genetic Testing Registry, 4/26 (~15.4%) contain genes with Limited clinical evidence. CONCLUSION: Clinicians and laboratory diagnosticians should note that <60% of the genes on clinically available panels have Strong or Definitive evidence of association with hereditary colon cancer or polyposis, and >40% have only Moderate, Limited, Disputed, or Refuted evidence. Continuing to expand the structured assessment of the clinical relevance of genes listed on hereditary cancer testing panels will help clinicians and diagnostic laboratories focus the communication of genetic testing results on clinically significant genes.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Estudos de Associação Genética , Testes Genéticos , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Medição de Risco
16.
Genet Med ; 21(7): 1486-1496, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30504929

RESUMO

PURPOSE: To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS: Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS: Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION: The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Técnicas Genéticas , Células 3T3 , Animais , Teorema de Bayes , Calibragem , Simulação por Computador , Humanos , Técnicas In Vitro , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Genet Med ; 20(9): 1054-1060, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29300386

RESUMO

PURPOSE: We evaluated the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines for internal consistency and compatibility with Bayesian statistical reasoning. METHODS: The ACMG/AMP criteria were translated into a naive Bayesian classifier, assuming four levels of evidence and exponentially scaled odds of pathogenicity. We tested this framework with a range of prior probabilities and odds of pathogenicity. RESULTS: We modeled the ACMG/AMP guidelines using biologically plausible assumptions. Most ACMG/AMP combining criteria were compatible. One ACMG/AMP likely pathogenic combination was mathematically equivalent to pathogenic and one ACMG/AMP pathogenic combination was actually likely pathogenic. We modeled combinations that include evidence for and against pathogenicity, showing that our approach scored some combinations as pathogenic or likely pathogenic that ACMG/AMP would designate as variant of uncertain significance (VUS). CONCLUSION: By transforming the ACMG/AMP guidelines into a Bayesian framework, we provide a mathematical foundation for what was a qualitative heuristic. Only 2 of the 18 existing ACMG/AMP evidence combinations were mathematically inconsistent with the overall framework. Mixed combinations of pathogenic and benign evidence could yield a likely pathogenic, likely benign, or VUS result. This quantitative framework validates the approach adopted by the ACMG/AMP, provides opportunities to further refine evidence categories and combining rules, and supports efforts to automate components of variant pathogenicity assessments.


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Testes Genéticos/normas , Variação Genética/genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/normas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...